
www.manaraa.com

Abstract 
 

ELKINS, JASON ROBERT.  Efficient Uncertainty Quantification for a Fast-Spectrum 
Generation IV Reactor System.  (Under the direction of Hany S. Abdel-Khalik.) 
 

This research is part of on-going research on the management of uncertainties in 

simulator predictions for Generation IV systems via optimum experimental design. The 

focus is on uncertainties originating due to input data. The objective is to devise an 

algorithmic framework for quantification of uncertainties, identification of their key 

sources, and ultimately guiding the design of validating experiments for their reduction. 

An integral part of this research is the development of uncertainty quantification 

algorithms for models involving many input data and output responses. This represents 

the focus of the research reported here. 

Uncertainty Quantification (UQ) in nuclear systems simulation is playing an 

increasing role in supporting decisions related to the research and development of 

advanced nuclear energy systems, especially those of interest to the Global Nuclear 

Energy Partnership (GNEP) and Next Generation Nuclear Plant (NGNP) programs.  UQ 

will help assess the adequacy of existing simulation tools and associated databases, e.g. 

nuclear cross-section data, and provide guidance to areas of models and/or data where 

further development and/or measurements should be prioritized.  A sensitivity and 

uncertainty analysis has been conducted to study the effects of neutron microscopic 

cross-section data uncertainty on macroscopic attributes that influence reactor core 

design, performance and safety for a Generation IV reactor concept.  In the realm of 

reactor engineering, neutron cross-section data represents the basic physics of neutron 

interactions with matter and therefore have large impacts on evolution of flux, power,
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reactivity and other reactor performance attributes.  Currently, we focus on uncertainties 

originating from cross-section data uncertainties, believed to be of primary significance 

for fast reactor calculations. 

This thesis presents a recent development of an UQ algorithm for increasing the 

efficiency of UQ to a level that enables its execution on a routine basis with best estimate 

calculations for various reactor performance attributes.  Our objective is to devise an 

algorithm that can characterize uncertainties in the multitudes of reactor performance 

attributes as evaluated by reactor simulation tools on a routine basis with reference 

calculations. 

The results of this study includes an efficient UQ analysis of calculated 

uncertainties for chosen key core attributes believed to greatly affect reactor core 

performance and safety, and an identification of key neutron cross-sections that 

contribute the most to important core attributes uncertainties. 
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1 Introduction 
 

1.1 Purpose 
 

Since the emergence of nuclear power generation, designers have worked to build 

nuclear reactors that are safe, reliable and efficient.   Today, research and development is 

highly focused on areas pertinent to advanced reactor design systems.  The U.S. 

Department of Energy has created many programs that fall into this category, such as the 

Advanced Fuel Cycle Initiative (AFCI), the Global Nuclear Energy Partnership (GNEP), 

Next Generation Nuclear Plant (NGNP) and Advanced Energy Initiative (AEI).  This 

thesis is supported by an on-going research program that focuses on understanding and 

managing the prediction uncertainties that originate from the uncertainties of physical 

data that are used in simulation and modeling tools for a Generation IV reactor concept.  

The goals of this study are to a) quantify the uncertainties for specific reactor core 

attributes that greatly affect core performance and safety, and b) determine which 

physical data contribute the most to reactor core attribute uncertainties.  With these core 

attributes uncertainties understood, optimization upon current design margins could be 

utilized.  Additionally, reactor designers would have the opportunity to evaluate the cost-

benefit of reducing these uncertainties by experimentation and/or improving the accuracy 

of modeling systems.  Finally, the core attribute uncertainties calculated in this research 

will build a framework for other studies to follow.  One parallel study will be to design an 

experiment utilizing Argonne National Laboratories (ANL) Zero Power Physics Reactor 

(ZPPR) that harnesses the quantified uncertainties calculated in this thesis to further 

reduce model data uncertainties where determined appropriate.  The focus of this study 
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will be confined to the development and utilization of an UQ algorithm in support of the 

research goals listed above. 

1.2 Core Simulator Background 
 

The operation of advanced nuclear reactors will place more stringent requirements 

on the acceptable accuracy of core simulation tools used in support of design and 

operation.  Core simulators enable designers to model reactor operation, performance, 

and safety before the expensive construction of the plant takes place.  Quantification and 

understanding of simulators’ uncertainties also allow designers the freedom to change 

design to reduce design margins which greatly affect operational cost and profit.  In 

addition, with the introduction of advanced reactor systems, i.e. Generation IV reactor 

systems, the accuracy of the simulation tools needs to be assessed in regard to key core 

attributes such as decay heat, peak fast fluence, discharge burnup, coolant void worth, etc 

since the experience with light water reactors (LWR) will not provide an informed basis 

for assessment due to the large difference in irradiation environment.  It is the purpose of 

this study to use the method of uncertainty quantification to calculate uncertainties found 

in key core attributes for an advanced reactor system due to cross-sections uncertainties. 

1.3 Uncertainty Quantification 
 

Uncertainty quantification (UQ) in nuclear systems simulation is playing an 

increasing role in supporting decisions related to the research and development of 

advanced nuclear energy systems.  UQ will aid in the understanding of the key core 

attributes uncertainties that are associated with these advanced reactor systems.  Such 

uncertainties arise from simulator input database uncertainties, e.g. cross-section data 

errors, numerical discretization errors and modeling approximations.  Few-group cross-
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section data represents the bulk of input data to core simulation tools, and will be the 

focus of this UQ study.  UQ of key core attributes will provide guidance to models and/or 

data where further development and/or measurements should be prioritized to reduce 

attributes uncertainties.  Sensitivity and uncertainty analysis of calculated uncertainty 

estimates is vital in safety analysis, since the reliability of the predictions must be known 

in order to set realistic design margins for reactor systems; and further reduces the 

reliance on over-conservatism in design.  The target is that by identifying key uncertain 

cross-sections to which the response is most sensitive, one will be able to improve the 

cross-sections database used in the analysis and thereby improve the accuracy of the 

calculations [15].   

This thesis presents a recent development of an UQ algorithm for increasing the 

efficiency of UQ to a level that enables its execution on a routine basis with best estimate 

calculations for various reactor performance attributes, which denote important reactor 

core responses.  The objective is to devise an algorithm that can characterize uncertainties 

in the multitudes of reactor performance attributes as evaluated by reactor simulation 

tools. Some of these attributes include the three-dimensional power and fluence 

distributions, reactivity coefficients, thermal limits and possible in-core instrumentation 

readings.  Currently, the focus is based on uncertainties originating from cross-section 

data uncertainties, believed to be of primary significance to fast reactor calculations. To 

achieve this goal, one must overcome the computational challenges posed by the 

complexity of reactor simulation tools and their associated large input and output (I/O) 

data streams.  Calculated uncertainties translate into cost of margin which is required to 

ensure safe and reliable operation of the reactor. 
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Our proposed approach reduces the number of model evaluations via the 

utilization of the Efficient Subspace Methods (ESMs) [3].  ESM is primarily used to 

perform uncertainty and sensitivity analysis for applications that contain large (I/O) data 

streams while minimizing the number of required model evaluations.   The use of the 

ESM method has been proven very useful in thermal reactor UQ calculations and has 

shown that cross-sections uncertainties present a major source of error in thermal reactor 

calculations [4].  This thesis extends the applicability of ESM to advanced reactor design 

concepts, specifically sodium cooled fast reactors. 

1.4 Uncertainty Quantification Techniques 
 

There are many different types of data originated UQ techniques that have been 

developed over the years, and a few key techniques are noted below.  These techniques 

include a deterministic and stochastic forward model approach, an adjoint model 

approach, and a subspace approach which was ultimately used for this study.  However, 

performing uncertainty calculations can be challenging due to large input/output data 

streams that are associated with reactor system modeling tools.  Uncertainties also arise 

from numerical discretization approximations and homogenization theory modeling 

approximations along with finite arithmetic round-off error.  For this study, numerical 

and modeling errors will be neglected and only uncertainties due to cross-sections will be 

investigated.   

1.4.1 Deterministic Forward Technique 
 

Fundamentally, there are two deterministic UQ methods that can be used for 

uncertainty quantification, e.g. the forward and adjoint perturbation methods.  The most 

basic uncertainty technique, which is through a forward approach, is performed by 
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varying selected input data one at a time in order to observe an output response.  By 

observing how the output changes via input data perturbation, sensitivity information can 

be drawn about the perturbed input data.  Repeating this methodology over a range of 

input parameters constructs a sensitivity operator which is used in many sensitivity and 

uncertainty analyses.  This method can be used to propagate uncertainties in models’ 

input data [14].  Let the matrix  denote an input data covariance-variance matrix.  

Additionally, let us denote  as a response and  a sensitivity operator where the ith 

element of  is defined by: 

C

R S

S

   [ ]i
iα

∂
=
∂

RS .               (1.4-1) 

Eq. (1.4-1) shows that the sensitivity operator is merely the change in response to some 

input parameter, iα .  One can show that the response uncertainty, in units of variance, is 

given by: 

var( ) = TR SCS ,              (1.4-2) 

where the variance of the response is calculated by “sandwiching” the input data 

covariance matrix between the conformable forms of the sensitivity operator – this 

relation is often called ‘the sandwich equation’.  Even though this method works, 

calculating the sensitivity matrix and performing the mathematical operation shown in 

Eq. (1.4-2) is very time consuming and will not be feasible with models that have large 

amounts of input data.   

1.4.2 Adjoint Technique 
 

Another method for sensitivity analysis is based on the calculation of the adjoint 

solution which can be considered as a reverse approach to the forward-model.  The 

5 
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highlight of the adjoint methodology is that sensitivity coefficients can be calculated for a 

particular response due to all input data.  An ideal setting for this method occurs when 

there are comparatively fewer responses, , than input parameters, n , i.e. where .  

Typically, sensitivity coefficients are calculated for selected core responses, thus a 

sensitivity matrix for each response pertaining to all input data can be created.  As seen in 

the work by G. Aliberti, et al., a core attribute covariance matrix can be determined by 

multiplying the sensitivity matrix by the input data covariance matrix, and finally by the 

transposed sensitivity matrix [11].  Additionally, the adjoint method in Aliberti’s study 

was used to calculate uncertainties in reactor and fuel cycle parameters in regard to cross-

section perturbation [11],[13].  However, sensitivity analysis by adjoint methodology can 

become time consuming when the number of responses is large, which occurs often in 

reactor calculations.   

m m n<

1.4.3 Stochastic Forward Technique 
 

Another forward technique is known as stochastic sensitivity analysis.  This 

approach works for systems that have larger input and output data streams [14], which is 

more appropriate for this study.  Further, this method uses Monte Carlo sampling 

techniques, which can be random, orthogonal, or Latin hypercube in which all assume 

some input data statistical distribution [16].  In a brief description, random sampling 

selects points without taking into account points that have been chosen previously.  

Orthogonal sampling divides the entire space of samples into equal subspaces while 

simultaneous sampling creates a total ensemble of points like a Latin hypercube sample; 

Latin hypercube sampling demands for a prescribed number of sampled points that are 

divided so that the range of each variable is divided into equal probability intervals [16].  

6 
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Observing the output after running such input data through computational models allows 

one to check the distribution in post processing analysis.  A great benefit of Monte Carlo 

sampling is its randomness, which creates an unbiased approach in regards to data 

sampling.  In other words, all data that exists within the input data space has an equal 

opportunity of being sampled, whereas a biased approach would disregard certain data to 

help shape output quantities in a particular fashion. 

1.4.4 Subspace Technique 
 

ESM is primarily used to perform S/U analysis for applications that contain large 

(I/O) data streams while minimizing the number of required model evaluations.  Such an 

application is Multi-Scale/Multi-Physics (MSMP) modeling.  “Recently, MSMP 

modeling has proven to be essential to the successful modeling of the full fuel cycle 

where a wide spectrum of physical processes occur with large variations in time and 

spatial scales such as neutron physics, heat transfer, partitioning and reprocessing, and 

waste management, etc” [3][17]1.  For an ill-conditioned problem, ESM approximates the 

behavior of large rank deficient matrices such as the sensitivity and covariance matrices 

in an efficient form.  As shown in Eq. (1.4-2), the variance of response parameters can be 

determined via the sandwich equation; however, obtaining the sensitivity operator along 

with calculating this product can become very time consuming.  ESM utilizes the fact 

that there normally exists a dimensionality reduction in this calculation thus reducing the 

number of model evaluations necessary for this calculation.  Therefore, a substantial 

reduction in computational run-time can be achieved.   

 

 
1 Quotations denote direct referencing. 
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1.5 Computational Modeling Description 
 

Reactor system modeling is a tool that is utilized in all segments of the nuclear 

industry for reactor design, optimization and safety.  These models map neutronic 

interaction with various isotopes to simulate core power, flux spectra, depletion 

characteristics, etc.  Generally, a many-group cross-section library that exists for all 

isotopes in the model must be utilized.  For computational storage and run-time 

efficiencies, these many-group cross-section libraries are collapsed to few-group cross-

section libraries via a processor that performs a lattice physics or pin-cell calculation 

using flux-averaging and resonance treatment techniques.  A core simulator model 

utilizes the few-group cross-section library and calculates many core attributes. 

For this UQ application, which focuses on an advanced reactor system, a cross-

section library processor (MC2-2) was used to collapse a many-group cross-section 

library (ENDF) and a fast reactor simulator (REBUS-3) was utilized to model the core.  

A black box flow diagram of this modeling process is shown in Figure 1. 
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Figure 1: Black Box Modeling Flow Diagram 
 
Section 1.5.1 and section 1.5.2 describe in detail the MC2-2 processor and REBUS-3 

model used in this study, respectively.     

1.5.1 MC2-2 Description 
 

MC2-2 is a processor used for calculating fast neutron spectra and multi-group 

cross-sections from ENDF/B data libraries.  This code was created by Argonne National 

Laboratory (ANL) and distributed by the Radiation Safety Information Computational 

Center (RSICC) located in Oak Ridge National Laboratory (ORNL).  MC2-2 solves the 

neutron slowing-down equations using basic neutron data from the ENDF/B-V data files. 

9 
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The spectrum that is calculated by MC2-2 is used to collapse multi-group to few-group 

neutron cross-section data.  Eq. (1.5-1) presents the general formulation used to calculate 

macroscopic few-group cross-sections via flux weighting techniques. 

           
( ) ( )

( )

1

1

g

g

g g

g

E

x
E

x E

E

dE E E

dE E

φ

φ

−

−

Σ

Σ =
∫

∫
              (1.5-1) 

where xΣ  is the effective macroscopic cross-section over selected energy groups, 

1g gE E E −< < , which is weighted by the group dependent neutron flux.  MC2-2 

accommodates high-order P scattering representations and provides numerous 

capabilities such as delayed neutron processing, isotope mixing, free-format input, and 

flexibility in output data selection.  A fundamental mode homogeneous unit cell 

calculation is performed using a multi-group or a continuous slowing-down treatment.  

Multi-group neutron homogeneous cross-sections are then finally generated into an 

ISOTXS format for an arbitrary group structure [5].   

1.5.2 REBUS-3 Description 
 

REBUS-3, here forth denoted as REBUS, is a code system that is designed for the 

analysis of fast reactor fuel cycles.  Much like MC2-2, REBUS was created by ANL and 

distributed by the RSICC which is located at ORNL.  “Two basic types of analysis 

problems are solved: 1) the infinite-time, or equilibrium, conditions of a reactor operating 

under a fixed fuel management scheme, or 2) the explicit cycle-by-cycle, or non-

equilibrium operation of a reactor under a specified periodic or non-periodic fuel 

management program” [10].  The code models fuel depletion over a user-specified cycle  

10 
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length and fuel management scheme. REBUS is also a deterministic core model.  Finally 

REBUS is equipped to model hexagonal-z geometry fuel assembly arrays, which is the 

design for this study.   

 Additionally, a 15-group MC2-2 -- REBUS model was used as the basis for this 

study [20]. 
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2 ABTR Description 
 

An Advanced Burner Test Reactor (ABTR) was chosen for this study, which is 

based on a General Electric Hitachi Nuclear’s S-PRISM (SuperPRISM) Fast Reactor 

Design.  S-PRISM is a pool-type, modular design for a sodium-cooled fast reactor 

designed to operate near breakeven or as a breeder reactor [1].  The ABTR core model is 

a 250MWt/96MWe liquid sodium-cooled fast reactor that consists of 199 hexagonally 

shaped assemblies.  A breakdown of these assemblies are as follows: 54 driver 

assemblies, 78 reflector assemblies, 48 shield assemblies, 10 control rod assemblies and 9 

test assemblies, where 6 of these test assemblies are referred as middle-core assemblies in 

this thesis.  The 54 driver assemblies are divided into two enrichment zones, denoted as 

an inner and outer core region; 24 inner-core fuel assemblies with a TRU fuel enrichment 

of 16.5% and 30 outer-core fuel assemblies with a TRU fuel enrichment of 20.7%.  A 

ternary metal alloy fuel for the 54 driver assemblies was chosen to be (U-TRU-10Zr) 

with a 94.2% fissile content WG-Pu feed.  The 6 test assemblies, or middle-core 

assemblies, are identical to the driver assemblies except that LWR-SF TRU fuel is used.  

Table 1 presents the TRU isotopic composition for the weapons grade plutonium and 

LWR-SR TRU driver fuels. 
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Table 1: TRU Isotopic Composition (%) 

 
 

 
   Each reflector assembly is composed of 91 HT-9, ‘high temperature’, solid pins 

which are arranged in a triangular pitch array.  The shielding assemblies contain 19 pins 

which are composed of HT-9 cladding along with a natural boron and B4C combination.   

13 
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Figure 2: ABTR Core Configuration 
 
Figure 2 provides a geometrical layout for the 199 assemblies present in this fast reactor 

design.     

14 
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Table 2 shows the inventory makeup along with mass flow rates for the U-TRU-

Zr fuel. 

Table 2: (U-TRU-Zr) HM/TRU Inventory and Mass Flow Rate 

 
 
In Table 2, U238 and Pu239 are the key isotopes that contribute the highest inventory for 

this core design.  U238 contributes 81.68% of HM inventory while Pu239 makes up 85.87% 

of TRU loading.  Pu239 is created via a neutron capture reaction with U238, which creates 

U239 and further decays into Np239 and finally Pu239.  Per cycle, two inner and two outer 

fuel drivers are required and Table 2 verifies that U238 and Pu239 are charged and 

discharged from the core at much higher mass flow rate in comparison to other HM 

isotopes. 

The ABTR operates in four-month cycles and has an average/peak discharge  

15 
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burnup of 97.7/130.8 MWd/kg and a fissile/TRU conversion ratio of 0.58/0.65.  

Reactivity control and neutronic shutdown are provided from the use of 7 primary and 3 

secondary control assemblies via bank movement mechanisms.  The shutdown margin for 

the primary system, assuming that the most reactive assembly is stuck out, is 7.63$ at 

BOEC and 12.88$ at EOEC [2].   

The primary cooling system consists of a pool-type arrangement of liquid sodium 

that is connected to an intermediate sodium loop.  A supercritical CO2 Brayton Cycle 

power generation cycle was proposed for this study.  A plot of the overall thermodynamic 

cycle for this proposed ABTR design can be seen in Figure 3. 

 

Figure 3: ABTR Thermodynamic Cycle 
 
As seen in Figure 3, the intermediate sodium loop connects to the supercritical CO2 

Brayton Cycle by the means of a Na-to-CO2 heat exchanger where heated CO2 flows into 

a turbine generator [2].  The superheated gas propels turbine blades, which generates 

electricity for the grid. 
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3 Methodology 

 
The proposed approach is based on the use of the Efficient Subspace Method 

(ESM), which derives its power from the following three assumptions: A) local linearity 

of the computational model within range of input data uncertainties, B) ill-conditioning 

of the covariance matrix characterizing input data uncertainty information, and C) ill-

conditioning of the model sensitivity matrix. If condition A is not satisfied, the estimated 

uncertainties will be only first-order accurate. Conditions B and C are not necessary; 

however, they correlate the UQ-associated calculational overhead to the degree of ill-

conditioning of the input data covariance and model sensitivity matrices. 

3.1 Model Local Linearity 
 

Model local linearity is an important aspect that must be taken into account so that 

key core attribute uncertainties are calculated correctly and that the ESM method can be 

utilized.  As mentioned previously, a fast reactor fuel cycle model (REBUS) was selected 

to model the ABTR core for a converted equilibrium to non-equilibrium scenario (will be 

discussed in a later section).  REBUS is a non-linear model; however, with the use of 

local linearity by remaining in range of input data uncertainties, key core response (i.e. 

attribute) uncertainties can be calculated.   

A model  that maps  to Ω σ∈ℜn y∈ℜm  can be approximated by a local linear 

function around a reference point ( )0 0, yσ  if it satisfies the following condition:  

     
1

( ) ( ) ( ) ( )
=

′ ⎡ ⎤Ω −Ω = Ω −Ω⎣ ⎦∑
k

o i i
i

σ σ α σ σ o    (3.1-1) 
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where  and σ y  are vectors characterizing  input data and  performance attributes, 

respectively.  For the remainder of the paper, we identify variables with single bars as 

vectors and bold font as matrices.  The vector 

n m

= +i o iσ σ δσ  describes the input data after 

being perturbed from their reference values by k random perturbation { iδσ }.  Each 

perturbation iδσ  is selected to be linearly independent from all other  perturbations.  

The 

1k −

′σ  is a vector of input data perturbed by a linear combination of the previously 

selected  random perturbations, i.e. k

1=

′ = +∑
k

o i
i

iσ σ α δσ     (3.1-2) 

Satisfaction of Eq. (3.1-2) assures linearity of the performance attributes changes with 

respect to all input data.  If some performance attribute exhibits a non-linear relationship 

with respect to some input data, Eq. (3.1-1) will not be satisfied.  The residual of Eq. 

(3.1-1) can measure the deviation from linear behavior, here denoted by the non-linear 

error.  

 This study serves to identify two limits on the sizes { }iα  of input data 

perturbations: a) an upper limit  is selected high enough to ensure that the 

perturbations cover the ranges of input data uncertainties (i.e. within 4 standard 

deviations of their respective mean values).  This is important to ensure that the 

computational model behaves linearly with input data varying at the tail ends of their 

distributions.  And b) a lower limit  is selected to determine the minimum size of input 

data perturbations that can induce noticeable changes in performance attributes.  These 

upper and lower cross-section perturbation limits will be found via a prescribed 

Uγ

Lγ

18 
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numerical tolerance limit,ζ  , that is subject to engineering judgment and is determined by 

the analyst. 

 To determine the upper limit  and lower limit  for input data perturbation 

sizes, two linearity tests were employed.  Along with these limits, the linearity tests aid in 

finding the local linearity region in REBUS for perturbing the input data.  There were two 

techniques used to determine the range, or standard deviation in this case, at which cross-

sections could be perturbed and REBUS would remain in a linear region.   

Uγ Lγ

3.1.1 Scaled Random Cross-Section Perturbation Study 
 

The first technique was to create one random direction, where a direction refers to 

a certain perturbation of input cross-section data from a reference condition.  

Randomness of each cross-section perturbation is important to ensure that all cross-

sections will be perturbed without a biased approach.  The size of the cross-sections 

perturbations would then be scaled, using some scaling factor, in that same random 

direction.  Linearity confirms that scaling the input will produce an output perturbation 

proportional to the size of the scaling factor.  By using different scaling factors, the 

linearity range for REBUS can be found.  This linearity method was used to calculate the 

upper limit,  for cross-section perturbation, after exploring several random directions 

and repeating the scaling procedure described above.  The implication is that if the cross-

sections perturbations exceed the upper limit  then REBUS will behave non-linearly.  

Based on a prescribed numerical tolerance limit,

Uγ

Uγ

ζ , which varies based upon the reactor 

system attribute, a maximum cross-section perturbation was found.  This follows when: 

( ) ( )( ) ( ) ( )( )o i o o i oσ αδσ σ α σ δσ σ ζΩ + −Ω − Ω + −Ω >              (3.1-3) 
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where ζ  is a prescribed tolerance limit, α  denotes the scaled standard deviation, iσ  is 

the ith perturbed cross-section and oσ  is the reference cross-section.  By scaling the cross-

section perturbation vector, one can find when the left-hand side (LHS) of Eq. (3.1-3) 

becomes greater than the numerical tolerance limit.  At this point, the non-linear error 

exceeds the tolerance limit and thus the upper numerical limit, , for perturbing cross-

sections is found, where 

Uγ

Uγ α= . 

 Furthermore, the numerical tolerance limit was also used to calculate the lower 

limit , or minimum perturbation for cross-section data that would still produce some 

noticeable change in modeled output that exist above the non-linear error margin.  

Similar to finding the upper limit, , calculating the lower limit revolved around some 

prescribed numerical tolerance limit, denoted as 

Lγ

Uγ

ζ .  Depending on the attribute, this 

tolerance limit was based on engineering judgment along with knowledge from thermal 

reactor analysis [4].  Accordingly, for some random cross-section perturbation direction, 

a minimum scaling factor was found such that the absolute change in an attribute from 

running the perturbed and unperturbed cross-sections became less than the numerical 

tolerance limit, i.e., 

( ) ( )o i oσ αδσ σ ζΩ + −Ω < .    (3.1-4) 

As α  is decreased, the difference in attributes calculated from the perturbed and 

unperturbed cross-section inputs will also decrease.  The point at which the LHS of Eq. 

(3.1-4) becomes less than the tolerance limit is when the lower limit for cross-section 

perturbation will emerge, i.e. Lγ α= .  By setting a lower limit for cross-section  
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perturbation, responses will behave linearly due to this cutoff from non-linear error. 

3.1.2 Multiple Random Cross-Section Perturbation Study 
 

Although the previous linearity test allowed for the calculation of the upper and 

lower standard deviation limits, the second test served as a ‘sanity check’ to evaluate the 

model at these standard deviations where ,L Uσ γ γ⎡ ⎤∈ ⎣ ⎦ .  This technique was to allow a 

random number generator to produce random directions.  This linearity test differs from 

the former because this test observes the linearity of n primary directions rather than one.  

Linearity also shows that if there are n random directions, then a linearly combined case, 

which is the summation of each random direction multiplied by a random scaling factor 

can be approximated using a linear model.  For this study, it is imperative that the square 

of scaling factors sum to 1 to ensure that the linearly combined cross-section vector will 

have the same size as individual cross-section vectors.  In equation form, let 

[ ]1 2,  ,  ... , nσ σ σ  denote random cross-section vectors which span from .  The 

linearly combined cross-section vector is defined below in Eq. (3.1-5), 

1...i = n

1

n

LC o i i
i

σ σ α δ
=

= +∑ σ     (3.1-5) 

where, 

    ( )
2

, .
i

i j
iRMS

n σ

σ
σ σ= =∑    (3.1-6) 

The root mean square (RMS), or quadratic mean, for each individual cross-section vector 

was set so that ,L U
σσ γ γ⎡∈ ⎣ ⎤⎦ , which was set to a conservative 5% in the study.  

Following methodology by Waller [21], let us derive the standard deviation of the 

21 



www.manaraa.com

linearly combined cross-section vector, LCσ .  First, let us introduce the expected value 

and variance for a given cross-section vector as ( )iE iσ μ=  and ( ) 2
iiV σσ σ= , 

respectively.  Taking the first moment or expected value of LCσ  yields: 

( )
1

LC

n

LC o i i
i

E σσ μ σ α
=

= = +∑ μ                                     (3.1-7) 

where the expected value of the reference cross-section vector returns itself.  Now take 

the second moment of the variance of LCσ : 

       ( )22
LC LCLCEσσ σ μ= − σ                                         (3.1-8) 

where 

                      (
1 1 1

LC

n n n

LC o i i o i i i i i
i i i

σ )σ μ σ α σ σ α μ α σ μ
= = =

⎛ ⎞ ⎛ ⎞
− = + − + = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ .         (3.1-9) 

Therefore, the variance of the linearly combined cross-section vector is defined by: 

                       ( ) ( )2 22 2 2

1 1

2 2

1
LC i

n n

i i i i i i i
i i

E E
n

i
σ σσ α σ μ α σ μ α σ

= =

⎡ ⎤ ⎡ ⎤= − = − =⎣ ⎦ ⎣ ⎦∑ ∑
=
∑

2

.        (3.1-10) 

By setting  as described above, the following holds. 2

1
1.0

n

i
i

α
=

=∑

             2 2

1
LC i

n

i
i

σ σσ α σ
=

=∑              (3.1-11) 

2 2

1
LC

n

i
i

σ σ
2σ σ α

=

= ∑              (3.1-12) 

     
LCσ σσ σ=               (3.1-13) 

Therefore, Eq. (3.1-13) verifies that the RMS of the linearly combined cross-section 

vector, 
LCσσ , will be equal to a prescribed RMS of each individual cross-section vector 
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such that ,
LC

L U
σ σσ σ γ γ⎡= ∈ ⎣ ⎤⎦

)

.  Finally, the standard deviation that was chosen, which 

exists within the lower and upper limits, can be tested by showing that, 

( ) ( ) ( )(
1

n

i i o LC o
i

y yα σ σ ζ
=

⎛ ⎞
− − Ω −Ω <⎜ ⎟

⎝ ⎠
∑ ,            (3.1-14) 

where iα  are the scaling factors, and iy  and oy  denote some ith perturbed and 

unperturbed core attribute, respectively. 

3.2 Ill-Conditioning of Covariance Data 
 
3.2.1 Theory: Uncertainty Propagation 
 

As seen in uncertainty quantification work by Ronen, the “sandwich rule” is an 

uncertainty propagation method to calculate a covariance matrix for a set of attributes 

given:  

1) the input parameters covariance matrix  

2)  and the sensitivity matrix that characterizes the change in attributes per 

change in input parameters.     

Provided with some non-linear computational model which contains input parameter 

uncertainties described by probability density function (PDFs), the sandwich rule is 

derived by taking the first and second moments of these corresponding PDFs.  In this 

case, the input parameters uncertainties, i.e. cross-sections uncertainties, are of a 

Gaussian distribution.  This propagation method ensures that the attributes uncertainties 

found by calculating the attribute covariance matrix will also have a Gaussian 

distribution. 

Let the mathematical expectation of an arbitrary function ( )h σ of a vector of  
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continuous input parameters σ  be given by: 

          ( ) ( ) ( )E h h f dσ σ σ
+∞

−∞

⎡ ⎤ =⎣ ⎦ ∫ σ                                      (3.2-1) 

where ( )E h σ⎡⎣ ⎤⎦  is the expected value of ( )h σ  and ( )f σ  is the PDF that characterizes 

input parameter uncertainty.  Now consider a nuclear reactor core simulator’s non-linear 

model as a vector valued function: 

                                   ( )y σ= Ω                  (3.2-2)             

where  is a vector of reactor performance attributes, and y∈ℜm σ∈ℜn  a vector of cross-

sections data input to the simulator.  Applying Eq. (3.2-1) to the non-linear model shown 

in Eq. (3.2-2) provides the expected value of y , 

   [ ] ( ) ( )E y f dσ σ σ
+∞

−∞

= Ω∫ .               (3.2-3) 

Further, the general definition for the covariance of these attributes is shown below: 

    ( ) ( )( ),
i j

T

i j i y j yCOV y y E y yμ μ⎡ ⎤= − −⎢ ⎥⎣ ⎦
,                          (3.2-4) 

where 
*yμ  represents the mean value for the *y  attribute [22].  Applying Eq. (3.2-4) to 

the non-linear model in Eq. (3.2-2) provides the expected covariance of the attributes, 

                         ( ) ( )( ) ( )( ) ( ),
i j

T

i j y yi j
COV y y f dσ μ σ μ σ

+∞

−∞

⎡ ⎤= Ω − Ω −⎢ ⎥⎣ ⎦∫ σ .           (3.2-5)      

Let us now perform a Taylor series expansion on Eq. (3.2-2).  This expansion forms a 

first-order linear approximation for the non-linear model.  Namely,   

( ) ( )2
o oy y Oσ σ= + − + ΔΩ                (3.2-6) 
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at o uσ σ= + , where y  is a vector of core attributes, u  represents some cross-section 

perturbation,  is the sensitivity matrix and Ω ( )2O Δ  are higher order terms.  Further, 

denote oy y yΔ = −  and oσ σ σΔ = −  for later use.  Ideally, the sensitivity matrix can be 

attained by calculating the adjoint solution which reveals the sensitivity of a core attribute 

to all input parameters [7].  However, calculating the sensitivity matrix can be very time 

consuming.  By neglecting higher order terms, Eq. (3.2-6) verifies that the sensitivity 

matrixes effect on a vector can be evaluated by running the non-linear model at two 

separate points where:   

                                                     [ ] ( ) 1,...,
 

1,...,
i

ij
j

i m
for

j n
σ
σ

∂Ω =⎧
= ⎨ =∂ ⎩

Ω .                (3.2-7) 

Substituting the first-order linear approximation of the computational model into Eq. 

(3.2-3) provides the mean values of the attributes, oy , where: 

    ( )oy oσ= Ω .                                               (3.2-8) 

Notice that the expected value with respect to input parameters is the reference case 

whereas the expected value of the core attribute y  is simply evaluated by running the 

model at the input parameters reference case.  Finally, let us calculate the first-order 

approximate covariance for the uncertainties in y  by substituting the first-order linear 

approximation into the general covariance equation shown in Eq. (3.2-4), where: 

                               

( ) ( )( ) ( )( )
( )( ) ( )( )
( )

,

                    

                    ,

                    

T

i j i o j o

T T
i o j o

T
i j

COV y y E

E

COV

σ σ σ σ

σ σ σ σ

σ σ

⎡ ⎤= − −⎢ ⎥⎣ ⎦
⎡ ⎤= − −⎢⎣

=

Ω Ω

Ω Ω

Ω Ω

⎥⎦   .                   (3.2-9) 
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In other words, the covariance matrix for core attribute uncertainty is given by:  

               (3.2-10) T=y xC ΩC Ω

where  is a block-diagonal cross-section covariance matrix that was provided by BNL 

[6]; each block is 15x15 corresponding to a 15 energy group representation.  

xC

Figure 4 

presents a graphical interpretation of a block-diagonal matrix. 

 

Figure 4: Block Diagonal Matrix 
 
In this figure, let each square that is formed by the arrangement of dots represent a 

covariance matrix for an individual cross-section.  For this study, the cross-section 

covariance matrix housed many more sub-covariance matrices, or blocks than shown 

above.   
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Let us also point out that any general covariance matrix, i.e. a full matrix without 

a trend, can be broken down into diagonals and off-diagonals.  Mathematically, diagonals 

of a covariance matrix represent the variance of a particular attribute whereas off-

diagonals represent the correlation between two different attributes.  Taking the 

covariance of one component with respect to itself yields the variance for that specified 

component, where: 

         ( )
2 2,

i ii i i y yCOV y y E y μ σ⎡ ⎤= − =⎢ ⎥⎣ ⎦
.            (3.2-11) 

Therefore, the diagonal entries for a given covariance matrix, i.e. the cross-section 

covariance matrix in this case, are in units of variance and can simply be converted into 

standard deviation by taking the square root of these diagonal entries.       

Conventionally, uncertainty analyses attempt to create the sensitivity matrix in 

order to calculate the core attribute covariance matrix shown in Eq. (3.2-10); however, 

with large amounts of input/output (I/O) streams, using the adjoint method to create a 

sensitivity matrix is very time consuming and expensive, i.e.  responses would require 

 adjoint solutions.  Therefore, a forward model approach which harnesses the strength 

of ESM was utilized.  

m

m

3.2.2 ESM-Based Approach 
 

In using the ESM approach, it is imperative to show how ESM builds a low rank 

approximation to the sensitivity or Jacobian matrix.  The theory behind this approach 

relates to the Orthogonal Decomposition Theorem, noted in linear algebra work.  This 

theorem shows that for every ,  m x n∈ℜΩ

  ( ) ( ) ( ) ( ) & TR N N R⊥ ⊥= =Ω Ω Ω ΩT              (3.2-12) 
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where  and . nσΔ ∈ℜ
myΔ ∈ℜ

28 

nFurther, an orthogonal decomposition of and mℜ ℜ  can be computed as follows: 

( ) ( ) ( ) ( )m TR R R N⊥ℜ = ⊕ = ⊕Ω Ω Ω Ω              (3.2-13) 

( ) ( ) ( ) ( )n TN N N R⊥ℜ = ⊕ = ⊕Ω Ω Ω Ω              (3.2-14) 

where  denotes the range-space, ( )*R ( )*TR  denotes the row-space,  denotes the 

null-space,  denotes the left-hand null-space, and 

( )*N

( )*TN ⊕  signifies that  are 

spaces which contain orthogonal complementary subspaces.  Given that , 

the size for each subspace can be written as follows: 

 and m nℜ ℜ

( )rank r= ΩΩ

( ) ( ) ( ) (dim dim dim dimT Tr R R n N m N= = = − = −Ω Ω Ω Ω )Ω    (3.2-15) 

where ‘dim’ stands for the dimension of , or the number of vectors in any maximal 

independent subset for columns or rows of the sensitivity matrix.  Eq. (3.2-15) is 

significant because it shows the extent of independent data present within these 

fundamental subspaces.  Furthermore, it was shown that  

Ω

nσΔ ∈ℜ  and ; now 

let’s apply this subspace approach to the linearly approximated model shown in Eq. (3.2-

6), 

myΔ ∈ℜ

( )y σ σ σ σ⊥
Δ Δ Δ Δ= = + =Ω Ω Ω Δ .            (3.2-16) 

Eq. (3.2-16) demonstrates that nσΔ ∈ℜ  can be broken down into subspaces where, 

following Eq. (3.2-14), , therefore ( TRσΔ ∈ Ω ) ( )Nσ ⊥
Δ ∈ Ω .  The importance of this 

equation relates to the fact that only input data that exists in ( )TR Ω  can affect changes in 
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modeled output, such that ( )y RΔ ∈ Ω .  Therefore, the action of the sensitivity operator 

upon input data from  will map to( )N Ω 0 .  Hence, data from ( )N Ω  is no longer needed 

and from Eq. (3.2-15) it was shown that ( ) ( )dim dim TR R r= = ΩΩ Ω .  Ultimately, this 

reveals that only  independent input data perturbations from rΩ ( )TR Ω  are needed to 

change the output of core attributes [9],[19].   

3.2.3 Mathematical Method to Calculate Core Attribute Covariance Matrix 
 

As shown in Eq. (3.2-10),  is the cross-section covariance matrix that was 

provided by BNL.  Previous work has illustrated that 

xC

xr , or the rank of , is often much 

smaller than the size of the input cross-section data and the output performance attributes, 

i.e. , implying that only 

xC

xr n, m xr  forward model evaluations are required to quantify 

uncertainties in the attributes y [9].  The following methodology was used to prove that 

the cross-section covariance matrix, , is of a rank deficient form.  Start by taking the 

singular value decomposition (SVD) of the block-diagonal matrix , which takes the 

form: 

xC

xC

2=C WΣ WT
x x ,             (3.2-17) 

diag{ }x xr  × r
js=Σx ,             (3.2-18) 

  [
x1 2 rw w .... w× =W xn r ]              (3.2-19) 

and { }2
js  , and { }jw  are the eigenvalues and eigenvectors of the cross-section’s 

covariance matrix.  SVD is an important factorization of a real or complex matrix and 

due to the symmetric nature ofC , the right and left-hand side multiplying matrices are x
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equivalent.  Matrix  contains a set of orthonormal basis vector directions for , 

where each {

W Cx

}jw  refers to some direction in the input data space, i.e. a perturbation of all 

input data that is uncorrelated with all other perturbations.  Finally, the matrix 2
xΣ  

contains the eigenvalues which have units of variance.  A cross-section perturbation 

matrix can now be created which aids as an input to REBUS. 

      ,             (3.2-20) x x xn x r r  x r=X W A

         { }x xr  x  r
jdiag α=A ,             (3.2-21) 

where  is the cross-section perturbation matrix,  is the left singular vector matrix 

from the SVD of , and A is a diagonal matrix composed of scalars, 

X W

Cx jα ,  that fix the 

root mean square (RMS) for each column in  to a set standard deviation of W xσ , or 5% 

to ensure that linearity of the REBUS model holds.  The dimensions for the cross-section 

perturbation matrix are , where n represents the total number of isotopes, reaction 

type, spatial composition and all 15 energy groups.  Each column from  is now a 

cross-section perturbation input file that will be run separately in REBUS.  Running the 

perturbation matrix through REBUS produced an output matrix composed of reaction 

rates, which span all nodes in the core for all isotopes and fission/capture reactions, 

which took the form shown in Eq. (3.2-22), 

xn x rX

xn x rX

  ='Y ΩX .              (3.2-22) 

'Y is then multiplied by the corresponding eigenvalues from the SVD of the 15-group 

cross-section covariance matrix.  The scaling factors used to fix the RMS for each 

column in  are now taken out, i.e. W
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        .                        (3.2-23) xm x r -1= '
xY Y A Σ

 Using an ESM-based UQ approach [8], one can show that uncertainties in y  

characterized by a covariance matrix , may be given by: yC

[ ] [ ]*
1

xr TT
y *j j

j=

= =∑C YY Y Y                          (3.2-24) 

where, 

    [ ]* ( ) ( )j j 0 j jw s σ w s σ= = Ω + −ΩY Ω
j 0 .             (3.2-25) 

Eq. (3.2-24) demonstrates how the ESM method provides another route to calculate the 

core attribute uncertainty covariance matrix without the explicit knowledge of the 

sensitivity matrix .  Matrix Y , or the uncertainty response matrix, shown in Eq. (3.2-

25) is formed simply by running the model at two points, namely at some perturbed point 

along with the unperturbed reference point.   

Ω

Notice that the summation in Eq. (3.2-24) runs up to xr , the numerical rank of the 

cross-sections covariance matrix, which is determined via a singular value 

decomposition.  By observing the decline in the singular values from the SVD of , 

one can utilize the lower limit for cross-section perturbation, 

Cx

Lγ , to find a cutoff point at 

which certain perturbations contain too small of a magnitude to produce any change in 

core attribute output.  The lower cross-section perturbation limit revealed that  

which proves that C  is indeed ill-conditioned.  Therefore, only 

xr n,m

x xr  forward model 

evaluations are needed to evaluate the uncertainties in . C y
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3.3 Ill-Conditioning of Model Sensitivity Matrix 
 

32 

m

Another goal of this thesis was to present a recent development of an UQ algorithm 

for increasing the efficiency of UQ to a level that enables its execution on a routine basis 

with best estimate calculations for various reactor performance attributes.  To accomplish 

this, the latter part of this study dealt with the investigation of further reducing the 

amount of forward model evaluations by examining the ill-conditioned nature of the 

sensitivity matrix.  The sensitivity matrix is a rectangular matrix that contains the first 

order derivatives of m  core attributes with respect to  input data.  Ill-conditioning of 

the sensitivity matrix implies that the number of independent input data perturbations 

leading to changes in attributes is much less than the number of input data and attributes, 

i.e. the matrix rank: , which was shown in section 3.2.2. 

n

Ωr n,

 For this study, this proposed approach reduces the number of model evaluations 

to a minimum by recognizing that the rank of the covariance matrix of core attributes  

is much smaller than the rank of the cross-sections covariance matrix .  Again, this is 

due to the dimensionality reduction induced by the forward model  whose numerical 

rank  is also shown to be very small.  Following Eq. (3.2-24), it was shown that the 

core attribute covariance matrix could be calculated with 

yC

xC

Ω

Ωr

xr  model evaluations.  It is the 

intension of this section to prove that: 

         [ ] [ ] post post post post* * *
1 1= =

*
⎡ ⎤ ⎡ ⎤= = = = ⎣ ⎦ ⎣ ⎦∑ ∑YY Y Y C Y Y Y Y

postx rr TTT T
yj j j j

j j

  (3.3-1) 

where we can calculate the core attribute covariance matrix by capturing the effect of xr  

directions while only using a linear combined subset of  directions.  Section 3.3.1, postr
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shown below, provides the algorithm that was used to calculate the core attribute 

covariance matrix in a reduced  forward model evaluations. postr

3.3.1 Algorithm to Compute Reduced Core Attribute Covariance Matrix 
 

33 

,r

,r

Studies have shown that  is smaller than the effective numerical ranks of 

either the sensitivity matrix or the cross-section covariance matrix, i.e. .  

This assures that the amount of forward model evaluations to calculate the core attribute 

covariance matrix  can be reduced.  With 

postr

min( )post Ω xr r≤

yC min( )post Ω xr r≤  known, a methodology to 

reduce forward model evaluations to compute the core attribute uncertainty covariance 

matrix was created.  One can exploit this by first performing an SVD factorization of the 

uncertainty response matrix in Eq. (3.2-25) as follows: Y

                                   
post

postx m × rm × r
post post post post* *

1=

⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑Y Y U Σ V
r

T

j jj j
j

,                       (3.3-2)              

where  is the effective rank of the matrix postr postY .  The effective numerical rank of 

matrix postY can be found by a short algorithm that will be discussed in section 4.2.1.  Eq. 

(3.3-2) also shows that the SVD of the uncertainty response matrix  is equivalent to the 

SVD of the reduced uncertainty response matrix, 

Y

postY .  Let us now set Eq. (3.3-2) equal 

to Eq. (3.2-23), where one can show that: 

         ,   (3.3-3) postm  x  r
post post post post= =U Σ V Y ΩWΣT

x

where the effect of taking the SVD of postY is equal to running REBUS with  forward 

model evaluations.  Taking the transpose of 

postr

post
TV  on both sides of Eq. (3.3-3) yields a 

form that resembles Eq. (3.2-20), i.e. the cross-section perturbation matrix  xn x rX :
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    post post post=U Σ ΩWΣ Vx ,    (3.3-4) 

                                                          post *jz ⎡ ⎤= ⎣ ⎦WΣ Vx j
                                           (3.3-5)  

where jz  denotes the linearly combined post-processed cross-section perturbation vector.  

As mentioned previously, the SVD of a matrix is a type of ordered factorization that 

orders singular values in a descending order.  In this case, the first  columns of the 

matrix 

postr

postV  form an orthogonal basis for the fundamental subspace ( )postR Y .  It was 

found that using the first  singular vectors, or primary directions, frompostr postV , which is 

used to linearly combine perturbation vectors in   ...   ,  1,  1 j postz z z j r⎡ ⎤= =⎣ ⎦ , can be 

evaluated through REBUS to produce similar data found from xr  forward model 

evaluations.  Namely, from Eq. (3.2-25) and Eq. (3.3-2), one can re-write Eq. (3.2-24) as: 

post

post post*
1=

*
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑C = Y Y

r
T

y j j
j

,                 (3.3-6) 

where  

post *
( ) (0 j 0σ z σ⎡ ⎤ = Ω + −Ω⎣ ⎦Y

j
) .              (3.3-7) 

At this point in the derivation, the core attribute covariance matrix was calculated using 

reduced  forward model evaluations.  It is also shown in Eq. (3.3-7) that postr postY  was 

calculated using the derived linearly combined cross-section perturbation vector from Eq. 

(3.3-5).  Finally, substituting the SVD of postY , which is shown in Eq. (3.3-2), into Eq. 

(3.3-6) yields an equation that calculates , where yC

post

post post post post post post*
1=

⎡ ⎤ ⎡⎣ ⎦ ⎣∑C = U Σ V V Σ U
r

T
y *

⎤⎦
T

j j
j

.   (3.3-8) 
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However, computational time associated with the calculation of  shown in Eq. (3.3-8) 

is high due to the fact that , where 

yC

postm r post postm x r m x r
post post

T
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦yC Y Y .  This matrix times 

matrix operation requires { } ( ){ }12 2
post postm * r m r+ −  multiplication and addition 

operations.  By realizing the orthogonal nature of postV , where 1
post post

−=TV V , Eq. (3.3-8) 

simplifies to 

   
post

2
post post post *

1=

⎡ ⎤⎣ ⎦∑C = U Σ U
r

T
y j

j

.    (3.3-9) 

Recall that all input data, denoted by σ ,  are contained where σ∈ℜn .  Note that the size 

of the input data space is , whereas the sources of uncertainty have been reduced to 

, i.e. the effective rank of .  Therefore, Eq. (3.3-9) shows that core attribute 

uncertainties can be calculated via  forward model evaluations compared to the 

former  evaluations by use of the singular vector and singular value matrices, 

n

postr yC

postr

xr << n

postU  and  2
postΣ , respectively.   

3.4 Uncertainty Quantification 
 
3.4.1 Key Attribute Uncertainties Quantification 
 

At this point in the study, an efficient algorithm which utilizes the ESM 

techniques has been completed to calculate the core attribute uncertainty matrix with postr  

forward model evaluations.  It is of further interest to utilize this algorithm to quantify the 

uncertainties for specific reactor core attributes that greatly affect core performance and 

safety.  Formulating these core attribute uncertainties is ideal for fast reactor design and 

implementation.  Not only will the knowledge of these uncertainties aid in future fast 
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reactor work, but increase profits by reducing design margins between operating and 

limiting parameters via reactor design optimization and experimentation.  Such core 

attributes for the ABTR include discharge burnup, conversion ratios, and power peaking 

factors, to name a few.  These quantities, along with more attributes, will be the primary 

focus for uncertainty quantification.   

 Let  denote an unperturbed key core attribute that was either calculated or 

documented in this study.  It was previously found and shown in Eq. (3.3-6) that the core 

attribute covariance matrix  can be calculated in reduced  forward model 

evaluations.  Now set some perturbed response,  which exist in 

l
oy

yC postr

l
iy postY , for  

where  denotes total number of responses.  Arbitrarily setting  to contain only one 

response allows us to generate an equation to calculate core attribute uncertainty.  Begin 

by subtracting then dividing each perturbed response by the nominal value to form a 

relative quantity: 

1,  l m=

m yC

                                                   ˆ
l l

l i
i l

o

oy yy
y
−

= ,   for               (3.4-1) 
1,  

1,  
posti r

l m

=⎧
⎨
=⎩

where  denotes a relative response for run ‘i’ and response ‘l’.  Applying the same 

principles used in Eq. (3.2-23), the linearity normalization factors from matrix  that 

were used in pre-processing work, 

ˆ l
iy

A

α , must be taken out to accurately calculate any 

uncertainty, i.e., 

ˆ
*

l l
l i
i l

o i

oy yy
y α
−

= .                                                   (3.4-2) 
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Given that  has been arbitrarily set to contain one response, Eq. (3.3-6) is now a 

vector-row multiplied by vector-column operation.  In linear algebra terms, this equates 

to the squared Euclidean norm which can be seen in Eq. (3.4-3), 

yC

       
( )2

post post
1

2
2
ˆ

1

  

*

post

post

l

r
T l

i
i

r l l
i o
ly

i i i

y

y y
y

σ
α

=

=

=

⎛ ⎞−
⇒ = ⎜ ⎟

⎝ ⎠

∑

∑

Y Y

.    (3.4-3) 

Therefore, the uncertainty for any key core attribute was found by taking the square root 

of Eq. (3.4.3): 

                                                    
2

ˆ
1 *

post

l

r l l
i o
ly

i i i

y y
y

σ
α=

⎛ ⎞−
= ⎜

⎝ ⎠
∑ ⎟ .    (3.4-4) 

3.4.2 Identification of Key Uncertain Cross-Sections  
 

As mentioned in the introduction to this thesis, one goal of this study was to 

identify the key isotopes/reaction type combination that contributed the most to these 

calculated uncertainties.  By taking the forward model approach, a single input parameter 

can be perturbed which in turn affects all output data.  Hence, this method allows one to 

pinpoint key input data that contributes to higher core attribute uncertainty.  Recall that 

Eq. (3.2-17) presents the SVD of the block-diagonal cross-section covariance matrix , 

where matrices that contain the eigenvalues and eigenvectors for C  are presented in Eq. 

(3.2-18) and Eq. (3.2-19), respectively.  Additionally, these eigenvalues correspond to 

isotopes with specific reaction types that exist in a range of energy groups.  One can 

show that these eigenvalues represent an uncertainty for each isotope/reaction rate 

combination.   

Cx

x
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Furthermore, a methodology, described below, which harnesses the standard 

deviation of diagonal entries from the cross-section covariance matrix, was used to 

identify the important cross-sections that contribute to high core attribute uncertainty.  

Taking the SVD of the uncertainty response matrix  in Eq. (3.2-23) reveals a 

similar form seen in Eq. (3.3-1) with the reduced  evaluations.  The importance of 

this factorization lies with the right-hand singular vector matrix which is composed of  

xm x rY

postr

V

postr  orthonormal column vectors.  Due to the factorization techniques of the SVD, higher 

level importance vectors are placed from left to right in .  Therefore, by ordering the 

first column in  from high to low, the corresponding singular values can also be 

ordered with the same index.  Thus, this technique provides a descending ordered list of 

isotopes with specific reaction types that exist at a certain energy group with 

corresponding uncertainty values.   

V

V
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4 Results 
 
4.1 Model Linearity 
 

Before utilizing this ESM based methodology for uncertainty quantification of key 

core attributes for this ABTR design, a linearity study was performed on a non-linear fast 

reactor fuel cycle model.  Recall from section 3.1 that the ESM method can be employed 

assuming that the computational model behaves linearly within range of input data 

uncertainties; two linearity studies were presented in section 3.1 to ensure that.     

4.1.1 Scaled Random Cross-Section Perturbation Study 
 

The first linearity test consists of scaling the cross-section perturbations vectors, 

which are randomly generated, by factors ranging from zero, denoting no cross-section 

perturbation, to five times their initial standard deviation, set to be 5% for all 

perturbations vectors.  By plotting core attribute deviations from the unperturbed case 

one can determine if the model behaves linearly with cross-sections perturbations.  For 

this linearity study, two core attributes were selected, the multiplication factor, and 

reaction rates. The multiplication factor  is defined by: effk

          Number of neutrons in generation (n)
Number of neutrons in generation (n-1)effk ≡ ,             (4.1-1) 

also referred to as core reactivity; the multiplication factor is a global reactor 

performance metric that describes the balance of neutrons, a core reactivity of 1.0 implies 

that neutrons are produced and lost at the same rate thus ensuring a self-sustained 

controlled chain reaction.  Following Eq. (3.1-2), cross-section perturbation vectors were 

scaled by scaling factor, [ ]0,5α ∈ .  Figure 5 plots these scaling versus the  deviations effk
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at the end of cycle, i.e. [Perturbed-DC] data collected for this study.   Let ‘DC’ denote the 

unperturbed case.   

 
Figure 5: Linearity Test A: Normalized keff vs. Scaling Factor at EOC 

 
It is evident from Figure 5 that as the standard deviation is scaled from [ ]0,5  the absolute 

change in  taken at EOC increases linearly.  To create an unbiased approach to cross-

section perturbation, multiple randomly generated vectors were employed to repeat the 

previous study and model local linearity was observed.  

effk

Figure 6 repeats the plot in 

Figure 5 but for another random perturbation vector showing a decrease in . effk
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Figure 6: Linearity Test B: Normalized keff vs. Scaling Factor at EOC 

 
 

 The second class of core attributes considered are the fission and absorption 

reaction rates at various locations inside the core.  Figure 7 plots the reaction rates 

deviations at various core locations vs. scaling factor at EOC in a similar manner to the 

previous graphs. 
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Figure 7: Linearity Test C: Normalized Node Reaction Rate vs. Scaling Factor at 

EOC 
 
The legend in the top-left corner describes the core regions for which the reaction rates 

deviations are plotted, i.e. ‘CR’, ‘ICO’, ‘MCO’, ‘OCO’, ‘REF’, ‘SHI’, and ‘BAR’ denote 

control rod, inner-core, middle-core, outer-core, reflector, shield and barrel regions, 

respectively.  Again, these figures demonstrate the linearity of the reaction rates 

variations within the range of introduced cross-sections perturbations.  Figure 7 only 

presents one reaction rate value for each region for the sake of simplicity.  For this study, 

the number of reaction rates is on the order of 2e4 and would present a crowded graph 
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representation.  Therefore, the linearity of all reaction rates was confirmed and only a few 

reaction rates were arbitrarily chosen to represent each core region. 

 After conducting these linearity tests with different random directions, the lower 

and upper limits for cross-section perturbation could be found via the use of the 

prescribed numerical tolerance limit.  Based on thermal reactor analysis experience [4], 

the numerical tolerance limit was set to 10 pcm and 0.1% for reactivity and core power 

density, respectively.  Table 3 shows the results for the lower and upper cross-section 

perturbation limits. 

Table 3: Cross-Section Perturbation Limit 
Cross-Section Perturbation Limit (Standard Deviation) 

Lower Limit - Lγ  Upper Limit - Uγ  

0.01% 7.50% 

 
Both the lower and upper cross-section perturbation limits that were calculated for this 

study were quite conservative.  Following Eq. (3.1-4), the point at which the LHS became 

less than the numerical tolerance limit was the point at which the lower limit for cross-

section perturbation was found.  In other words, after normalizing the perturbed core 

attribute from the unperturbed case, a standard deviation of 0.01% was the point at which 

the modeled response was greater than the non-linear error margin.  It was also found that 

applying a 0.01% standard deviation for cross-section perturbation was large enough to 

produce a noticeable change in core attributes.  Further, the upper limit was calculated via 

Eq. (3.1-3).  This equation states that the upper limit for cross-section perturbation will be 

found when the difference in the perturbed core attribute from the unperturbed case  
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exceeds the numerical tolerance limit.  And, the residual of Eq. (3.1-3) is denoted as the 

non-linear error margin which should not exceed the numerical tolerance limit.  It was 

found that an upper limit of 7.50% was the standard deviation for cross-section 

perturbation that would conserve model local linearity.  

4.1.2 Multiple Random Cross-Section Perturbation Study 
 

The second study to check model local linearity was to once again allow a random 

number generator to produce random perturbation vectors; however, in this case there 

will be many different random vectors instead of only using one.  As mentioned in the 

methodology section of this thesis, to ensure linearity, one must show that if there are n 

random directions and their corresponding attributes deviation, then a linearly combined 

vector, which is the weighted sum of the random vectors must induce deviations in the 

attributes that can be written as a linear combination of the original n attributes 

perturbations using the same weights used to combine the random vector.  In this 

instance,  values at EOC along with nodal power density data were used to check the 

linear range of the model.  

effk

Table 4 shows the data collected from applying this linearity 

study with  data at EOC. effk
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Table 4: Combined Linearity Test: Perturbed keff Data at EOC 
Run effk  

1  0.98723 
2 0.98061 
3 0.97604 
4 0.98393 
5 0.98132 
6 0.97787 
7 0.98605 
8 0.97595 
9 0.98384 

10 0.97956 
11 0.98675 

Linearly 
Combined 0.98157 

  
Compare 0.98161549 

Error 4.634412217 pcm 
 
It can be seen in Table 4 that there are 11 runs along with the linearly combined run.  The 

 column is a list of at EOC data collected for each random direction with a 

standard deviation of 5%.  The linearly combined perturbation vector was run through 

REBUS and thus a corresponding  value at EOC was calculated.  Following Eq. (3.1-

14), this technique will either prove or disprove that REBUS is linear for this standard 

deviation of 5% by manually calculating the combined  value.  This is done by taking 

each of the 11  values and multiplying them by random scaling factors and summing 

these together.  Recall, that the summation of the square of each random scaling factor 

was equal to 1.0.  This was performed and is shown as the ‘Compare ’ value in 

effk effk

effk

effk

effk

effk Table 

4.  The error shown in Table 4 was found by calculating k
k
Δ  between the ‘Linearly 

Combined and Compare ’ values and converting to pcm.  Ultimately, the error 

between the ‘Linearly Combined and Compare’ case was less than the prescribed 

effk
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numerical tolerance limit of 10 pcm, which proves that REBUS conserved linearity with 

a standard deviation of 5%. 

Provided with the same randomly created scaling factors used in the calculation 

shown in Table 4, Figure 8 shows the linearity study data collected for nodal power 

density over the active fuel region. 

 
Figure 8: Nodal Power Density in Active Core Region 

 
This study primarily focuses on core attributes, therefore only nodes in the inner, middle 

and outer regions of the active fuel region were selected.  Starting at the bottom of the 

core, let the variables “D-H” denote axial slices in the active fuel region.  Following Eq. 

(3.1-5), the linearly combined case was created and the output from this run is presented 

as the linearly combined vector in Figure 8.  Further, by manually creating a linearly 

combined vector using power density data along with the randomly created scaling 

factors, a comparison vector was created to check against the linearly combined vector.  

Finally, the error between the linearly combined and compare case needed to be less than 
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the set numerical tolerance limit of 0.1% for active core power density nodes to conserve 

model linearity.  The error between the linearly combined and compare vectors is shown 

in yellow in the plot and is less than the prescribed tolerance limit.  Therefore, setting the 

cross-section perturbation standard deviation at 5% ensures that model local linearity is 

conserved and validates the condition so that the ESM based algorithm can be utilized. 

4.2 Ill-Conditioning of Covariance Data & Model Sensitivity Matrix 
 

47 

m

For this study, an unofficial release of a 15-group cross-section covariance matrix 

from BNL, denoted by  was utilized [6].  Following the methodology in section 3.2, it 

was estimated that the rank of the cross-section covariance matrix was much less than the 

size of this matrix, and the output core attributes, i.e. ; this implies that only 

xC

xr n, xr  

forward model evaluations are required to quantify uncertainties in the attributes y .   

Further, the methodology in section 3.3 discusses the work to further reduce the 

amount of forward model evaluations to a minimum by recognizing that the rank of the 

core attribute covariance matrix  is much smaller than the rank of the cross-sections 

covariance matrix .  Following Eq. (3.3-6), the numerical rank of  can only be 

equivalent to the rank of the uncertainty response matrix 

yC

xC yC

postY .  Taking the SVD of postY  

led to a discovery that only  forward model evaluations were necessary to reproduce 

. 

postr

yC

By observing the decline of singular values that were found by taking the singular 

value decomposition of  and xC postY , one can find a point at which the cross-section 

perturbation is too minimal to produce a noticeable change in key core attribute output.  
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Figure 9 shows the square-rooted singular values for cross-section and core attribute 

output covariance matrices,  and , respectively. xC yC

 
Figure 9: Covariance Matrices Cx and Cy Singular Value Spectrum vs. Index 

 
The singular value spectrum of  and  is shown in units of percentage standard 

deviation.  Also, all singular values for each corresponding matrix have been normalized 

so that the largest value is set to 1.0.  For this study, an effective rank of the matrix  

was chosen such that .  Based on the lower limit , 

xC yC

xC

xr = 900 L 0.01%γ = Figure 9 reveals 

that an effective rank  is appropriate.  However, by setting the rank of the cross-300xr ≈
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section covariance matrix well above the lower limit, a more conservative approach could 

be taken. 

 Alternatively, the faster decline of the singular values from  indicates the rank 

reduction induced by the action of the forward model. This figure implies that the rank of 

the core attributes covariance matrix is much smaller than its dimensions, and hence one 

can exploit this to reduce the number of forward runs even further.   

yC

4.2.1 Algorithm to Calculate postr  Numerical Value 
 

It was shown in Eq. (3.3-1) that the core attribute covariance matrix could be 

created by either using xr  or a linearly combined  forward model evaluations.  

Further, let us recall that Eq. (3.3-9) revealed an efficient way to calculate the core 

attribute covariance matrix.  The following algorithm was used to calculate the numerical 

value of . 

postr

postr

1. Given that: [ ] [ ] [ ]
x 2

* *
1=
∑C = U Σ U
r

T
y j jj j

j

. 

2. Calculate: . { } [ ] [ ]2 22

1
,  1,  

x

i

r

y x ij jj
j

r iσ
=

= =∑ U Σ m

3. Set: =1. postr

4. Calculate: . { } [ ] [ ]2 22

1

post

i

r

y post ij jj
j

rσ
=

=∑ U Σ

5. If 

{ } { }
{ }

2 2
post

2
post post

YES: Goto Step 6.
*100%,  1,    0.01%  

NO: Goto Step 3. Set = +1 
i i

i

y y x

y x

r r
i m

r rr
σ σ

σ

⎛ ⎞− ⎧
⎜ ⎟ = ≤ ⎨⎜ ⎟ ⎩⎝ ⎠
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{

 Figure 10 presents the unperturbed reaction rate data that was calculated for this 

study.  Figure 11 compares the relative uncertainties calculated for reaction rates with 

 

6. Algorithm complete. 

The overall concept of this algorithm is to calculate the effective rank of the core attribute 

covariance matrix that will ultimately fulfill Eq. (3.3-1).  To begin, let us denote brackets 

}  shown in steps 2 and 4 as simple notation which signifies that either xr postr

postr

postr

 or  

evaluations were used.  The algorithm starts with a  guess of 1 and continues to build 

until step 5 has been met.  As shown in step 5 above,  is found when the percent 

difference between the core attribute variance calculated with xr

y post = 50

 and  evaluations is 

less than or equal to the prescribed numerical tolerance limit.  This limit is set above the 

non-linear error margin and is based on engineering judgment pertaining to this study.  

Via this methodology, the effective numerical rank of  was found where r .   

postr

C

xr

postr

 

and  forward runs, respectively. 
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Figure 10: Unperturbed Reaction Rate Data vs. Ordered Nodal Location 
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Figure 11: Relative Reaction Rate Uncertainty vs. Ordered Nodal Location 
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Figure 12: Absolute Reaction Rate Uncertainty vs. Ordered Node Location 
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Previously, it was mentioned that reaction rates were calculated for every node in the 

core for every isotope that could experience fission or capture reactions within a specific 

energy range.  However, it is not necessary to plot isotopes that exist in the structural 

components or coolant region of the core for a fast neutron spectrum.  Appendix 1 

presents neutron capture and/or neutron absorption cross-section plots for these isotopes 

that exist in the structural components and coolant region to confirm that such cross-

section data are negligible in a fast spectrum.  So, Figure 10, Figure 11 and Figure 12 

present the unperturbed reaction rates, relative reaction rates uncertainties and absolute 

reaction rate uncertainties that were calculated at each node location only within the 

active fuel region of the core for (U, Pu, Np, Am, Cm) isotopes which experience fission 

and capture reactions.  The x-axes of Figure 10 and Figure 11 denote ordered node 

location, where these nodes run over axial planes (D-H) and all radial nodes within the 

core.  Further, both x-axes are divided into three node location regions to graphically 

present the unperturbed reaction rates and reaction rates uncertainties throughout these 

segments of the core.  Let ‘ICO’, ‘MCO’ and ‘OCO’ denote inner-core, middle-core and 

outer-core regions, respectively.  The neutron flux spectrums for these regions can be 

found in Appendix 2.  As expected, the unperturbed reaction rates due to these isotopes 

are higher in the inner-core and outer-core regions; whereas, reaction rates in the middle-

core region are much lower.  This result is due to LWR-SF TRU fuel being used in the 

middle-core assemblies where as the inner-core and outer-core assembles contain high 

fissile WG-Pu fuel assemblies.  The TRU isotopic concentration for these two different 

fuel assemblies can be found in Table 1. 
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Figure 11 presents the relative reaction rate uncertainties that were calculated for 

this core design via Eq. (3.3-9).  Additionally, note that this figure is broken down into 

four separate plots for comparison purposes.  The legend shown in the top-right corner 

presents a brief description about each plot.  The red data represents reaction rate 

uncertainty that was calculated using all 900 primary directions from .  Alternatively, 

the black data, which greatly matches the former, represents reaction rate uncertainties 

that were calculated using the 50 linearly combined post-processed cross-section 

perturbation vectors that were calculated using Eq. (3.3-5).  The ultimate scope of this 

plot is to examine the difference between these two uncertainty cases.  Therefore, the 

percent difference data between the 900 and 50 cases is plotted in dark blue.   

xC

As shown in Figure 11, the relative reaction rate uncertainty is highest in the 

middle-core region compared to the inner-core and outer-core regions.  Additionally, 

labels were placed into Figure 11 to point out which reactions were causing these higher 

uncertainties.  It was found that reaction rates of 244Cm (n,f), 245Cm (n,f), 242Cm (n,f), 

242Pu (n,γ) and 238Pu (n,f) reactions have the highest relative uncertainties in the middle-

core region. This result is due to the TRU isotopic composition that is shown in Table 1.  

It can be seen that higher amounts of Pu, Am, and Cm isotope percentages are present in 

the LWR-SF TRU fuel, whereas zero parts of Am and Cm are integrated into the inner-

core and outer-core WG-Pu assemblies. Also note that the Cm isotopes reaction rates 

have the highest relative uncertainties since they have the highest relative cross-sections 

uncertainties as given in Figure 13 and Figure 14 in absolute and relative terms. 

The residual to Eq. (3.1-1), or the non-linear error was plotted in light blue in 

Figure 11.  In an ideal case, this model would be linear and non-linear error would not 
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exist.  As the degree of non-linearity increases in a model, calculated uncertainties 

become more of an approximation rather than accurate responses.  The model for this 

study is indeed non-linear; however, it can be seen in Figure 11 that the non-linear error 

is negligible and is contained within the span of the reaction rate uncertainty data.  This 

signifies that the non-linear error present in the model will not affect the accuracy of 

these calculated uncertainties.   
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Figure 13: 15-Group Relative Cross-Section Uncertainty Data 
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Figure 14: 15-Group Absolute Cross-Section Uncertainty Data
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4.3 Uncertainty Quantification 
 
4.3.1 Key Attribute Uncertainty Quantification 
 

After the discovery that reduced  forward model evaluations were sufficient to 

calculate the core attribute uncertainty matrix C , it was beneficial to apply these  

runs to calculate uncertainties in key core attributes.  The key core attributes chosen for 

this study are listed below: 

postr

y postr

1. Conversion Ratio  
3. Doppler Coefficient cents

K
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2. Multiplication Factor ( )  effk 4. Sodium Void Worth ( )  $

 

Table 5 provides nominal values used in calculating the uncertainties listed in Table 6.  

Table 5 also lists the nominal values that were used in similar studies. 

Table 5: Fast Reactor Nominal Values 
 Nominal Value 

Key Core 
Attribute 

Units Current 
Study 

ABTR 
Report

[2] 

ABTR 
Study 
[13] 

ANL Study 
[11] 

Hoffman’s
Study [18] 

Multiplication 
Factorb 

1.00638 
(633.96) 

-- -- 1.0528 
(5015.4) 

-- 

Multiplication 
Factorc  

 
effk  

(pcm) 0.99925 
(-75.056) 

-- 0.99925 
(-75.056) 

-- -- 

Conversion 
Ratioc  

-- 0.7695 0.65 0.7695 0.25 0.75 

Doppler 
Coefficientb,e 

-0.0788 -0.10 -- -- -0.10 

Doppler 
Coefficientc,e 

 
cents

K
 -0.0788 -0.10 -- (231 pcm) -0.10 

Sodium Void 
Worthb 

2.0799 1.75 -- -- 6.82 

Sodium Void 
Worthc 

 
$  

1.8700 1.85 -- (1831 pcm) 7.12 

 

 
59 



www.manaraa.com

60 

Current Study: ABTR Study: ANL Study: Hoffman Study: 
a - 121.7 EFPD - 250 MWth Reactor -840 MWth Reactor - 1000 MWth Reactor 
b - BOC - 121.7 EFPD - 155 EFPD - 232 EFPD 
c - EOC -Na Cooled -Na Cooled -Na Cooled 
d - Peak Region: ICO_F    
e - Evaluated at (To=850K, 

T1=950K) 
   

 

As previously mentioned, REBUS was selected to model the ABTR core for a converted 

equilibrium to non-equilibrium scenario.  The equilibrium model was provided by ANL 

[23].  For a non-equilibrium case, an explicit cycle-by-cycle operation for a reactor under 

a prescribed periodic or non-periodic fuel management program is utilized.  In this 

scenario, the initial composition of the reactor core can be specified.  In contrast, an 

equilibrium case operates under an infinite time-fixed fuel management program.  

External feed along with a reprocessing option can be utilized in this scenario [10].  For 

this study, the final core compositions were extracted from the equilibrium case and 

placed into a once through core model.  These compositions were incorporated into a 

non-equilibrium model and burned over a 121.7 day irradiation period with inner-core, 

middle-core and outer-core batches of 12/15/12, respectively.   

Following Eq. (3.4-4), the relative uncertainties for each attribute listed above 

were calculated and are documented in Table 6. 
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Table 6: Key Core Attribute Uncertainties 
 Uncertainty (%) 

Key Core Attribute Current 
Study 

ABTR Study 
[13] 

ANL Study 
[11] 

Palmiotti’s 
Study [12] 

Multiplication Factorb 0.9808 -- -- -- 
Multiplication Factorc  0.9515 0.2180 1.66 1.0 

Conversion Ratioc  2.1272 1.7147 -- 5.0 
Doppler Coefficientb,e 3.467 -- 6.0 
Doppler Coefficientc,e 13.987 -- -- 

Sodium Void      
Worthb 

11.3643 -- -- 
 

Sodium Void      
Worthc 

12.1598 -- 23.4 

   
   

7.0 (total) 

 
Current Study: ABTR Study: ANL Study: Palmiotti Study: 
a - 121.7 EFPD - 250 MWth Reactor -840 MWth Reactor - 1000 MWth Reactor 
b - BOC - 121.7 EFPD - 155 EFPD - 232 EFPD 
c - EOC -Na Cooled -Na Cooled -Na Cooled 
d - Peak Region: ICO_F    
e - Evaluated at (To=850K, 

T1=950K) 
   

 
 
The uncertainties that were created via this methodology are listed in the ‘Current Study’ 

column, whereas the adjacent columns to the right are similar studies conducted by other 

researchers listed here for comparison purposes [11],[12],[13].  Additional information 

regarding the reactor designs for each adjacent study can be found below Table 6.  By 

running  forward model evaluations in REBUS, the uncertainty for a particular 

attribute was calculated by observing the difference between all perturbed cases with the 

nominal value.  It can be seen that the uncertainties calculated for this study greatly 

resemble uncertainties that were documented for similar studies.  Excluding the ‘ABTR 

Study’ listed in 

postr

Table 6, the fast reactor designs, such as reactor power rating and burnup 

periods, did not exactly match the design for the current study, and therefore it was not an 

expectation to exactly match the uncertainties gathered from previous studies.   
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 The target uncertainty for the multiplication factor was around 1% k
k
Δ  through 

comparison purposes of other studies.  It was found that the  uncertainty for this 

ABTR design came out to be 0.9808% 

effk

k
k
Δ  and 0.9515% k

k
Δ  at BOC and EOC, 

respectively, using  forward model evaluations.  Comparatively,  uncertainty 

values for the other studies ranged from 0.2180% to 1.66%.  Additionally, the fuel 

Doppler reactivity and sodium void worth were examined for this particular study.  With 

liquid sodium as the primary coolant for the ABTR design, it was imperative to calculate 

the uncertainty for sodium void worth due to cross-section uncertainties since the sodium 

void worth is positive.  At BOC, the Doppler coefficient uncertainty was found to be 

3.467% which is similar to other data, whereas EOC uncertainty is 13.987%.  Finally, the 

sodium void worth uncertainty was calculated at BOC/EOC to be 11.3643/12.1598%, 

respectively.  The sodium void worth was calculated by evaluating the model with 

sodium coolant present in the core and once again by voiding any sodium coolant in the 

active fuel region of the core.  Note that at hot-full power (HFP), the reactor fuel pellets 

experience radial and axial expansion which forces liquid sodium bond into a gas plenum 

which exists at the top of each fuel pin.  

postr effk

Figure 15 presents a fuel assembly schematic and 

a cross-section cut representation of a fuel pin to show the fuel pellet and gas plenum 

locations in a fuel pin.  Therefore, it was necessary to void the sodium coolant that exists 

in this region of each fuel assembly.  Taking the difference between a sodium voided core 

with a non-voided core produced the sodium void worth.  Eq. (3.4-4) was utilized to 

calculate the uncertainty in this attribute in the same manner as the other core attributes  
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shown in Table 6.  This capability for quantifying uncertainties can be further used on 

core attributes such as peak discharge burnup, peak fast fluence, power peaking factor, 

peak linear power rate, etc.   

 
Figure 15: Fuel Assembly/Fuel Pin Schematic 
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Uncertainty data was also collected from the paper by G. Aliberti, et al., and is 

shown in Table 6 under ‘ANL Study’.  Aliberti used a sodium cooled fast reactor rated at 

840 MWth in his study.  Similarly to the current study, a U-TRU-Zr metallic alloy fuel 

was utilized.  Finally, with a conversion ratio of 0.25, the irradiation period lasted 155 

days [11].  The uncertainty data that was calculated from the current study is comparable 

to that found in the ANL report.   

G. Palmiotti performed an uncertainty analysis upon ANL’s Sodium Fast Reactor 

(SFR) design.  This uncertainty data can also be found in Table 6 under ‘Palmiotti’s 

Study.’  There was a limited supply of uncertainty data that was calculated by Palmiotti; 

however, uncertainty values for the multiplication factor, conversion ration and reactivity 

coefficients are comparable to results from this study.  

4.3.2 Key Cross-Section Uncertainty Quantification 
 

As pointed out, this analysis can also help identify the key cross-sections 

contributing the most to the calculated uncertainties.  A FORTRAN90 code was created 

to sort the first column vector of matrix postV  in descending order as per section 3.4.2 

methodology.  To accurately find which cross-sections were key in contributing to higher 

uncertainties, it was found that the elements of the uncertainty response matrix, postY , 

shown in Eq. (3.3-2), needed to be set as absolute quantities instead of relative quantities.  

As described in section 3.4.2, the SVD is taken of the postY  matrix.  Further, the singular 

values, which correspond to individual cross-sections, are matched up with each row 

from postV .  Since postY  is in absolute quantities, the elements of postV  are now ordered on 

the absolute difference from the unperturbed case rather than relative percent.  Thus,  
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higher level importance vectors from postV  which will contribute to higher attribute 

uncertainties are ordered from left to right.  Therefore, the first column of postV  , along 

with the corresponding singular values, were ordered in a descending fashion to find out 

which cross-sections contributed to higher attribute uncertainties.   

Table 7 shown below provides a list of the top cross-sections that contributed to 

key attribute uncertainty shown in Table 5, followed by Table 8 which shows the 15-

group energy ranges.   

Table 7: Key Cross-Section Uncertainty 
Isotope Label Reaction Type Energy Group Uncertainty 

Fe56 ( ),n γ  2 2.4696080E-01      

Fe56 ( ),n el  1 1.1030110E-01      

Cr52 ( ),n el  3 8.2986540E-02      

Fe56 ( ), 'n n  1 2.8781800E-01      

U236 ( ),n γ  3 1.1470010E-01 

Pu240 ( ),n γ  1 6.1275610E-01 
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Table 8: 15-Group Energy Range 
 Energy Range (eV) 

Energy Group Minimum 
Energy 

Maximum 
Energy 

1 6.0654E+06 1.4191E+07 
2 2.2313E+06 6.0654E+06 
3 1.3533E+06 2.2313E+06 
4 4.9788E+05 1.3533E+06 
5 1.8316E+05 4.9788E+05 
6 6.7381E+04 1.8316E+05 
7 2.4788E+04 6.7381E+04 
8 9.1190E+03 2.4788E+04 
9 2.0347E+03 9.1190E+03 
10 4.5401E+02 2.0347E+03 
11 2.2604E+01 4.5401E+02 
12 3.9939E+00 2.2604E+01 
13 5.4052E-01 3.9939E+00 
14 4.1400E-01 5.4052E-01 
15 0 4.1400E-01 

 
In Table 7, for each isotope the corresponding reaction type, energy group and relative 

cross-section uncertainty are provided.  Reaction types are as follows: ( ),n γ , , 

 denote neutron-gamma, neutron-elastic scattering and neutron-inelastic scattering 

reactions, respectively.  The uncertainties for each isotope/reaction are in units of relative 

standard deviation.  Therefore, from this study, Fe56, which has a neutron-gamma 

reaction in the second energy range shown in 

( ),n el

( , 'n n )

Table 7 is the highest contributor of 

uncertainty for key core attributes with an uncertainty of 24.69%.  Fe56 is known for 

having a large elastic and inelastic scattering cross-section and is used for structural 

support.  Further, Reference 11 documented that Fe56 ( ), 'n n  cross-section is the most 

significant structural/coolant material that contributes to higher core attribute 

uncertainties.  Fissile isotopes such as U235, Pu239 and Pu241 contain great potential to 

contribute uncertainty to key core attributes; however, these isotopes have been well-
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studied by simulative and experimental methods.  Table 9 shows the uncertainty data that 

was collected for these fissile isotopes. 

Table 9: Fissile Isotope Cross-Section Uncertainty 
Isotope Label Reaction Type Energy Group Uncertainty 

U235 ( ),n γ  2 8.1283430E-02      

U235 ( ),n f  3 7.8423090E-03 

Pu239 ( ),n γ  4 1.2353180E-02      

Pu239 ( ),n f  2 8.5398370E-02      

Pu241 ( ),n γ  1 8.3700860E-03 

Pu241 ( ),n f  1 3.5999780E-02      

 
For these selected isotopes, the neutron-gamma and neutron-fission reactions were 

chosen.  It can be seen in Table 9 that the uncertainties found for these fissile isotopes are 

smaller than the uncertainties presented in Table 7.  These isotopes may have been very 

sensitive in this system; however, due to lower uncertainties than many other isotopes 

they were not key contributors to higher attribute uncertainty. 

 

67 



www.manaraa.com

68 

5 Conclusions 
 

This work presents a new UQ algorithm that places a premium on minimizing the 

computational overhead, and ease of implementation. The approach exploits the rank 

reduction that often results from the continuous dimensionality reduction that is 

characteristic of most computational sequences. Our concern is mainly with more routine 

design calculations that must be performed very frequently and that requires uncertainty 

estimates for a wide range of performance attributes to help in system design and 

optimization.  By use of the forward model method, this study was able to pinpoint 

particular cross-sections that highly contributed to key core attribute uncertainty.  Also, 

following a ESM methodology, the efficiency in uncertainty quantification techniques 

were increased by realizing that model dimensionality reduction was present in this 

study.   

Of greater importance lies within the uncertainty values calculated for chosen key 

core attributes.  These attributes were chosen due to their effect upon ABTR 

performance, safety and design optimization.  It was a goal of this study to place a dollar 

value on the uncertainties found for each key core attribute.  Not only would realistic 

uncertainty estimates allow reactor design specialists to ‘fine tune’ design margins, power 

utilities would be able to calculate a net loss of revenue due to such uncertainties.  

Hopefully, the information gathered from the UQ development in this paper will 

encourage the nuclear industry to investigate how these uncertainties influence power and 

safety margins in their corresponding plants.  Overall, these results provide some 

knowledge behind the importance in uncertainty quantification on the microscopic data 

level, i.e. cross-section data.   
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6 Future Work 
 

Future work will focus on employing the developed methodology to characterize 

uncertainties in various core attributes judged to have an important impact on the overall 

reactor economy, e.g. shutdown heat, and discharged fuel heat load and radio-toxicity, 

etc.  The cross-sections impacting key performance metrics uncertainties can be 

identified as demonstrated in this study.  Further, an adaptive simulation device can be 

used to design the optimum experiment to reduce uncertainties of the identified key 

cross-section, e.g. optimize the design of (Zero Power Physics Reactor) ZPPR benchmark 

facility used in support of the sodium-cooled fast reactors experiments.  Finally, a cost of 

margin can be placed upon the uncertainties calculated in this study for each key core 

attribute.  Thus, analyst can evaluate the cost-benefit of reducing these uncertainties by 

experimentation and/or improve the accuracy of modeling systems. 
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1 Neutron Capture/Absorption Cross-Section Figures 
 

The following section presents the neutron capture or absorption cross-section 

figures from the ENDF/B 6.1 libraries for the isotopes that make up core structural 

materials and the coolant region.  These isotopes include: 10B, 12C, 23Na, 52Cr, 55Mn, 56Fe, 

58Ni and 100Mo.  The reflector, shield and barrel region of the core are structurally created 

of stainless steel, which is a alloy containing Fe, C, Cr and a small fraction of other 

metals.  Additionally, this reactor core is cooled by liquid sodium and therefore the total 

absorption cross-section is shown for 23Na.  At higher energies, such as the fast neutron 

spectrum seen in this study, the neutron capture and/or absorption cross-sections for these 

isotopes are negligible as can be seen in the following figures.  It is due to this reason that 

the reactions created by these isotopes were removed from Figures 4.2-2 and 4.2-3.
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Isotope: B-10 

 

Figure 16: B-10 Total Absorption Cross-Section 
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Isotope: C-12 

 

Figure 17: C-12 Radiative Capture Cross-Section 
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Isotope: Na-23 

 

Figure 18: Na-23 Total Absorption Cross-Section 
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Isotope: Cr-52 

 

Figure 19: Cr-52 Total Absorption Cross-Section 
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Isotope: Mn-55 

 

Figure 20: Mn-55 Total Absorption Cross-Section 
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Isotope: Fe-56 

 
Figure 21: Fe-56 Total Absorption Cross-Section 
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Isotope: Ni-58 

 
Figure 22: Ni-58 Total Absorption Cross-Section 
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Figure 23: Mo-100 Total Absorption Cross-Section 
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Isotope: Mo-100 
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2 Neutron Flux Spectrum Figures 
 
The following figures present the neutron flux spectrums over the 15 energy groups for 

the inner-core, middle-core and outer-core regions, respectively. 
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Figure 24: Inner-Core Neutron Flux Spectrum 
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Figure 25: Middle-Core Neutron Flux Spectrum 
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Figure 26: Outer-Core Neutron Flux Spectrum 
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